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Abstract

We investigate the performance of the force-coupling method (FCM) for particulate flow at microscales. In this

work, we restrict attention to flows where we may neglect fluid inertia (Stokes flows), particle inertia and Brownian

motion. The FCM performs well when distances between solid boundaries are sufficiently large, however it does not

capture the local effects of viscous lubrication forces for small gap widths. To improve the results, we develop a pa-

rameterization of the lubrication forces for inclusion in the model. This is based on exact results for isolated pairs of

particles and single particle–wall configurations. The correction is imposed through the addition of a lubrication barrier

force on affected particles. The parameterization is tested for several cases, illustrating both the improvements possible

and the limitations.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The sedimentation of particles in a liquid is a classical fluid mechanics problem. One of the major issues

in modeling such a system is the disparity between the lengthscales of the fluid flow, typically of the order of

the size of the fluid container (�10�1m), and the small size of the particles themselves (�10�4m). As a

consequence, most commonly used methods fall into one of two categories: those that achieve macroscopic

results for bulk quantities, at the expense of accurate modeling of microscopic effects; and those that model

the small scale effects accurately, but are limited in the number of particles they can handle.

There are various methods available for simulating suspension flows. Hu [19] and Johnson and Tezduyar

[27] have developed finite element methods which accommodate moving boundaries and fully resolve the
flow. Another approach which uses a fixed grid is the distributed Lagrange multiplier (DLM) method [16].
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This has been employed for moderate particle Reynolds numbers, and non-Newtonian flows. Immersed

boundary schemes have been applied to Stokes suspensions [11,46]. A Lattice–Boltzmann model has been

utilized by Ladd and co-workers (see [30] for a review).

Some methods employ the special properties of Stokes flows. The boundary integral technique falls into

this category (see [22,40] for examples of boundary integral methods for multiparticle systems). There are

also methods based on multipole expansion techniques, e.g. [43]. Stokesian Dynamics [3] is a widely used

multipole method. Various improvements to Stokesian Dynamics have recently been published, including

the implementation of a fast multipole technique for calculation of the mobility matrix [20], the use of
iterative methods for inversion of the mobility matrix [21] and the use of particle-mesh Ewald summation

techniques and fast Fourier transforms in periodic geometries [44].

This paper is concerned with making microscale improvements to the Force-Coupling Method (FCM).

The FCM is described in [34,37]. Validation of the method for Stokes flows is given in [33,37] for various

geometries. The method is also appropriate for 0 < Rep < 20. (Rep ¼ 2aU=m, where a is the particle radius,

U is the particle velocity and m is the kinematic viscosity of the fluid.) Comparisons with direct numerical

simulations at finite Rep are given in [32]. Comparisons with experiments are described in [33,35].

Some of the computational advantages of the FCM include:
• The flow domain is covered with a fixed mesh – there is no need to re-grid as the particles move around

the domain.

• The method is suitable for use in complex geometries and may be incorporated in standard flow solvers.

• High-order spectral methods may be used to solve for the flow, since the particles are distributed using

smooth Gaussian envelopes.

• We have low spatial resolution requirements within each particle.

• Modeling large numbers of particles (Oð106Þ) is well within current computational capability.

The model extends to ellipsoidal particles via a simple rescaling of the particle envelope [33]. Preliminary
results for finite Rep flows past ellipsoidal particles show good agreement between the FCM and DNS [31].

Maxey and Patel [37] showed that the FCM reproduces the flow past an isolated sphere quite well,

agreeing with the true solution at distances greater than 1=4a away from the particle surface. Closer to the

particle surface, the flow is smoothed out. Lomholt and Maxey [34] extended the analysis of particle pair

configurations and considered horizontal channel geometries. For particles close to, and in relative motion

with, another solid boundary, they found that the FCM underestimates the hydrodynamic drag. The use of

force-dipole terms improved the flow description and accuracy of particle velocities, for near–wall inter-

actions, or when particles were close together. The results given here show that nevertheless, when the
spacing is very small, only a limited accuracy can be attained.

Particles close to, and in relative motion with a rigid boundary (such as a wall or another particle) induce

a hydrodynamic force that acts to retard the motion of the particles. If a is the characteristic length scale of

the particle, and a� is the smallest separation distance between the two boundaries, an asymptotic calcu-

lation for Stokes flow shows that at leading order, for a fixed relative velocity, the drag on the particle is

singular in the small parameter �. This can create difficulties when computing numerical solutions. In

principle, with infinite resolution, lubrication forces would be sufficient to prevent particles colliding in

inertia-less Stokes flow. In practice, to avoid expensive asynchronous time-step reduction, a repulsive force
barrier is often employed to avoid overlap of particles.

The main goal of this work is to show how lubrication effects may be incorporated into the FCM scheme

and illustrate the contexts in which they are important. The parameterization is based on exact results for

isolated pairs of particles and particle–wall configurations at Rep ¼ 0, and known results for the FCM. The

correction is imposed through the addition of a lubrication barrier force on affected particles. The main im-

provements are seen in the particle velocities. Results are presented showing situations where there is good

agreement between the lubrication-augmented FCM model and exact results, as well as contexts where the

accuracy of the model is limited by the use of pairwise and particle–wall estimates in its formulation.
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Throughout this article, particles are assumed to be identical smooth rigid spheres. The effects of surface

roughness [47] and electrostatic repulsion between particles with polymer coats [42] are neglected. In ad-

dition, we restrict to flows where fluid inertia, particle inertia and Brownian motion may be neglected. For

example, this would be appropriate for the sedimentation of non-colloidal particles, where particle accel-

erations are small relative to gravity. At finite Rep the experimental results of Gondret et al. [18] and nu-

merical results of Lomholt [33] have shown that lubrication forces are less important, or act only over

shorter distances.

The paper is organized as follows: The FCM is described briefly in Section 2. In Section 3 we review
asymptotic results for particle pairs and particle–wall configurations where the lubrication approximation

is relevant. We give a few example comparisons of FCM simulations with these results. These demon-

strate the need for the inclusion of a lubrication correction. In Section 4, we describe our implementation

of a lubrication parameterization. Example simulations using the parameterization are presented in

Section 5. We conclude in Section 6. Appendices provide documentation of a novel iteration scheme for

calculating FCM-dipole terms, and an implementation of the Uzawa scheme with the FCM for Stokes

flows.
2. The force-coupling model

In this section we give a brief overview of the FCM. The reader is referred to the descriptions in [34,37]

for further details. Additional material may be found in [33].
2.1. Model description

The FCM is defined on a domain ðx; tÞ 2 X � R, X � R3. The fluid is assumed to extend over the whole

domain, including the volume occupied by the particles. The fluid velocity field, uðx; tÞ, and pressure, pðx; tÞ,
satisfy the Stokes equations:

�lr2uþrp ¼ f; ð1Þ
�r � u ¼ 0 ð2Þ

in ðx; tÞ 2 X � R, where l is the dynamic viscosity of the fluid. The flow must also satisfy prescribed

boundary conditions, specified according to the geometry of the problem (e.g., periodic boundary condi-

tions, no-slip (Dirichlet) conditions, etc.) We do not impose boundary conditions on the particle surfaces.

In contrast to a true multipole method, which uses the boundary conditions on the particle surfaces to

calculate the multipole strengths, the FCM imposes constraints on volume averaged moments of the flow,

which are consistent with the presence of a rigid particle. These are explained below.

The fluid momentum Eq. (1) is augmented with a source term, fðx; tÞ, which approximates the effect of
the particles on the flow, using FCM-multipole terms:

fiðx; tÞ ¼
XN
n¼1

F ðnÞ
i DðnÞðx� YðnÞðtÞÞ þ GðnÞ

ij
oHðnÞ

oxj
ðx� YðnÞðtÞÞ: ð3Þ

The sum is over all the particles in the system, the nth particle being located at YðnÞðtÞ. The first term in the

sum is known as the force-monopole and the second as the force-dipole: these are the FCM equivalents of

their namesakes in the multipole expansion. The functions DðnÞðxÞ and HðnÞðxÞ are spherically symmetric

Gaussian functions which we may think of as finite analogies of a Dirac delta function:
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DðnÞðxÞ ¼ 1

2pr2
D;n

� �3=2 exp �x2

2r2
D;n

 !
ð4Þ
HðnÞðxÞ ¼ 1

2pr2
H;n

� �3=2 exp
�x2

2r2
H;n

 !
; ð5Þ

where rD;n and rH;n are lengthscales related to the particle radius, an. Their values are calculated by

matching particle velocities obtained with the FCM to exact solutions for an isolated particle, settling in a

quiescent fluid and in a pure straining flow, respectively. This results in rD;n ¼ an=p1=2 and

rH;n ¼ an=ð36pÞ1=6. For further details, see [34,37].

Initial positions for each particle are prescribed. Particle positions evolve as

dY ðnÞ
i

dt
¼ V ðnÞ

i : ð6Þ

The particle velocities are computed as a local average of the fluid velocity:

V ðnÞ
i ðtÞ ¼

Z
uiðx; tÞDðnÞðx� YðnÞðtÞÞd3x: ð7Þ

With this definition for the velocity, we find a consistent energy balance between the rate of working by the

particulate phase and viscous dissipation of kinetic energy by the fluid [37]. The particle angular velocity is

given by

XðnÞ
i ðtÞ ¼ 1

2

Z
xiðx; tÞHðnÞðx� YðnÞðtÞÞd3x; ð8Þ

where x is the local fluid vorticity. The motivation for this definition is given in [33].
2.2. Calculating the multipole strengths

The force-monopole strength, FðnÞ, is equal to the hydrodynamic drag on the nth particle. Typically, this

is equal to the buoyancy adjusted weight of the particle, minus the particle inertia:

FðnÞ ¼ ðmp � mfÞ g

 
� dVðnÞ

dt

!
:

In this work we neglect particle inertia. This is appropriate for sedimenting suspensions where the effect of

gravitational acceleration is much larger than accelerations in the fluid.

The force-dipole strength tensor, GðnÞ
ij may be split into a symmetric part, SðnÞ

ij and an antisymmetric part,

AðnÞ
ij , such that GðnÞ

ij ¼ SðnÞ
ij þ AðnÞ

ij . The antisymmetric part is related to the external torque on the particle,

TðnÞ, via AðnÞ
ij ¼ 1

2
eijkT

ðnÞ
k .

The symmetric part, the stresslet, is related to the rate of strain tensor, given by

eij ¼ 1
2
ðoui=oxj þ ouj=oxjÞ. Since we have rigid particles which may not deform, we require that, on the

average, we have zero rate of strain within the particle

EðnÞ
ij ¼

Z
eijðxÞHðnÞðx� YðnÞÞd3x ¼ 0: ð9Þ
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With this definition of EðnÞ
ij , the constraint also implies that there is no work done by the stresslet. The exact

computation of SðnÞ
ij involves the construction and solution of a 5N � 5N linear system:

LS ¼ E;

where L represents the FCM Stokes flow operator which maps stresslet strengths to averaged particle

strains. L is a linear operator which depends on the geometry of the system and the particle positions. S is

the unknown, containing the independent components of the stresslet for each particle. E is the 5N vector

containing all the independent elements of the strain for each particle, determined from the flow due to the

external forces and torques on each particle. An iterative method is used to compute the solution. This
avoids assembling the operator L. The reader is directed to Appendix A for details of a novel scheme

employed for this calculation. This method gives faster convergence than the scheme described by Lomholt

[33].

In subsequent sections we will illustrate the effect of the inclusion or omission of the dipole term using

example simulations.
3. Lubrication effects

The work of Lomholt and Maxey [34] showed that the FCM smoothes the flow field in the regions close

to particle surfaces. Hence, the FCM underestimates the hydrodynamic drag on particles in close approach

to another boundary. Such underestimation can lead to unphysical effects such as particle overlap. In FCM

simulations of random suspensions by Climent and Maxey [6], such overlaps were prevented using a col-

lision barrier. This consisted of a repulsive potential force which was added to the force monopole on

particles sufficiently close to another solid boundary. The functional form of the force was chosen for

convenience, and the effects on the bulk flow assumed small. The potential force barrier is given in Ap-
pendix B. The DLM method also uses a repulsive force formulation to prevent collisions. This is described

in [16].

In this section, we briefly review the asymptotic results of lubrication theory for a single sphere close to a

plane wall, and for isolated pairs of particles. We present some examples of the failure of the FCM to

resolve these effects for the case of a single-sphere and a plane wall. Similar results for isolated pairs of

spheres are presented in [34]. We extend the idea of parameterizing microscale effects in the FCM such that

the parameterization has a basis in lubrication theory. It is worth noting that with a fixed time-step, hy-

drodynamic effects alone are insufficient to prevent overlap in all cases, so in dynamic simulations we must
also include a repulsive force, to act at the smallest scales. Dratler and Schowalter [10] found that Stokesian

Dynamics, which resolves pairwise lubrication effects, also needs some form of repulsive force in order to

prevent overlaps between particles.
3.1. Particle–wall interactions

3.1.1. Asymptotic results

For a single particle in a Stokes flow there is a linear relation between the velocity of the particle, and the

force and torque on it:
Fi ¼ 6pla AijUj

�
þ aBijXj

�
; ð10Þ

Ti ¼ 8pla2 CijUj

�
þ aDijXj

�
: ð11Þ
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A;B;C;D are dimensionless second rank tensors whose values are solely dependent on the geometry. The

Lorentz reciprocal theorem for the homogeneous Stokes equations implies that A ¼ AT, D ¼ DT and

BT ¼ C, for any geometry. It is worth noting that the reciprocal theorem also holds for the FCM.

We refer to right-handed orthonormal axes with the e1 direction normal to the wall and the other di-

rections parallel to the wall (see Fig. 1). Symmetry considerations imply that with respect to these axes A is

diagonal, and A22 ¼ A33. The only non-zero elements of B are B23 ¼ �B32. We may use the reciprocal

theorem to calculate C from B. D is diagonal, and D22 ¼ D33.

The calculation of the tensors A;B;C;D is referred to as a resistance problem. For a given distance
between the particle and the wall, their non-zero-entries may be computed from the solutions for four

configurations with prescribed velocities. Fig. 2 illustrates three of these configurations. Setting the ve-

locities in the figure as U1 ¼ �U , U2 ¼ 0, X3 ¼ 0 gives a squeezing flow. This arrangement of the particle

and wall may be used to calculate the component A11 in the resistance matrix. U1 ¼ 0, U2 ¼ U , X3 ¼ 0

corresponds to a translational shearing flow. This configuration may be used to calculate the components

A22 and C32 in the resistance matrix. B23 follows by reciprocity. A rotational shearing flow, U1 ¼ 0, U2 ¼ 0,

X3 ¼ X, may be used to calculate D33 and B23 directly. D11 can be calculated from an arrangement of a

sphere rotating with angular velocity X about a normal to the wall (not illustrated).
For each component the dominant contributions may be determined using an asymptotic expansion in

the small parameter �, the non-dimensional gap-width. These expressions are published in the literature,

unfortunately with many minor typographical errors. In Table 1 we give asymptotic series in a standardized

notation, resulting from careful cross-checking of results (and in some cases derivations) from the listed

references. Note that the inner solutions are singular (except for D11). These inner solutions may require an

O(1) correction, which in practice is obtained by fitting to numerical data. With the exception of the D11

term, the O(1) results given in the table are calculated as the � ¼ 0 limit of a linear least-squares fit of the

exact data given in the listed references (for �6 0:1). For the case of D11 the O(1) correction is known in
closed form [25].
Fig. 1. Particle–wall axes.

Fig. 2. Sphere and wall configurations.



Table 1

Lubrication theory results and O(1) corrections for a sphere moving close to a wall

Inner solution O(1) References

A11 ¼ � 1
�
þ 1

5
log �þ 1

21
� log � + )0.848 + Oð�Þ [4,8,23,29]

A22 ¼ 8
15
log �þ 64

375
� log � + )0.952 + Oð�Þ [17,25,29,39]

B23 ¼ � 2
15
log �� 86

375
� log � + )0.257 + Oð�Þ [7,17,25,29]

D11 ¼ 1
2
� log � + )1.202 + Oð�Þ [25,26]

D33 ¼ 2
5
log �þ 66

125
� log � + )0.371 + Oð�Þ [7,17,25,29]
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3.1.2. FCM results

We solve the FCM equations in a channel, using the Uzawa algorithm with a mixed Fourier-spectral

element discretization. The code is described in Appendix C. A single particle, of radius a ¼ 1 is placed in

the channel, with an imposed force of 6pla acting on it. This corresponds to the Stokes drag on an isolated
sphere moving at a velocity of 1.0. The fluid viscosity, l ¼ 1. The dimensions of the channel were chosen to

be 20a in the wall normal direction, and 50a in each periodic direction, in order to diminish the effect of the

periodic boundary conditions and the upper wall. The spatial resolution is 67 points in the wall normal

direction and 160 in the periodic directions.

It should be noted that the FCM is set up to solve mobility problems. In other words, given a force and

torque on each particle, the FCM will compute the particle velocities. This is the inverse of the resistance

calculations described in the previous section. The mobility problem perhaps presents a more natural

perspective, since experimentally we may specify a force or torque on a particle (via for example gravity or
electromagnetic fields), but we may not specify a velocity. Here, we only consider imposed forces, since we

are ultimately interested in sedimentation problems.

Imposed force normal to the wall. We impose a force on the sphere, normal to the wall, and it translates in

the direction of the force without rotating. This is analogous to the flow in Fig. 2, with U1 ¼ �U , U2 ¼ 0,

X3 ¼ 0. The hydrodynamic drag on the particle is equal and opposite to the imposed force. Utilizing

Eq. (10) we see that the ratio between the imposed force and the computed velocity should be

F1
6plaU

¼ �A11; ð12Þ

where the leading order term from Table 1 is Oð��1Þ. In Fig. 3 we compare results from the FCM with exact

results. Away from the wall, the FCM matches the exact data and there is negligible difference between the

results using just the force-monopole term and those which include the force-dipole term. As � is decreased
the simulations with and without the dipole term diverge. When � ¼ 0, the ratio F1=ð6plaU1Þ takes on finite
values, namely 4.38 and 7.77 for the simulation using the force-monopole term alone and that which in-

cludes the force-dipole correction, respectively. In the exact solution the particle is brought to rest when it

touches the wall, illustrating that � ! 0 is indeed a singular limit. The FCM data has been fitted to a

polynomial function of �, given in Appendix D.

The difference between the velocity fields for the two FCM simulations is made evident by Fig. 4 in

which a sphere sediments towards a wall. Panel (a) shows a simulation using both monopole and dipole

terms. The computed flow using just the monopole term is illustrated in (b). The circle indicates the position

of each sphere, the sphere center being located 1:01a away from the wall. The plots are in frames in which
the sphere is at rest. Note that the configuration is axisymmetric. In both cases the flow is smoothed out

close to the particle, and the forward stagnation point is shifted away from the wall. In the case where the

force-dipole terms are included, the virtual sphere (region of closed streamlines) is enclosed within the



Fig. 3. (a) Linear plot; (b) log–log plot of F1=ð6plaU1Þ against the non-dimensional gap-width � for the case of a force imposed on a

sphere above a plane, with the force acting normal to the plane. –––, FCM simulation with only the force-monopole term included;

----, FCM simulation with both force-monopole and -dipole terms; s, exact data from Brenner [4];�, exact data from [23]; ., exact data
from [8].

Fig. 4. Vector field plots for the case of a sphere sedimenting towards a wall, for a frame in which the sphere is at rest. h is the distance

from the wall and r is the distance, measured parallel to the wall, from the particle center. (a) Simulation using both force-monopole

and force-dipole terms; (b) simulation using only the force-monopole terms.
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actual sphere, whereas, in the case where we only use the force-monopole term the virtual sphere is larger

than the actual sphere.

Imposed force parallel to the wall. We impose a force on the sphere, parallel to the wall. For concreteness,

suppose the force is in the e2-direction. The sphere translates parallel to the direction of the force, and it

also rotates about a diameter parallel to e3. Thus the flow is a like that illustrated in Fig. 2, with U1 ¼ 0 and

U2;X3 non-zero. Since there is no external torque on the sphere, Eq. (11) implies that

aX3 ¼ � C32
: ð13Þ
U2 D33
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Thus Eq. (10) yields

F2
6plaU2

¼ �A22D33 �B23C32

D33

: ð14Þ

From Table 1 we see that the leading order term here is Oðlog �Þ. In Fig. 5 we compare the ratio

F2=ð6plaU2Þ. Again the FCM performs well away from the wall, but its accuracy decreases as � ! 0. When

� ¼ 0, in the case of the FCM simulations, the ratio F2=ð6plaU2Þ takes on finite values, namely 1.93 and

2.22 for the simulation using the force-monopole term alone and that which includes the force-dipole
Fig. 5. (a) Linear plot; (b) log–linear plot of F2=ð6plaU2Þ against the non-dimensional gap-width � for the case of a force imposed on a

sphere near a plane, with the force acting parallel to the plane. –––, FCM simulation with only the force-monopole term included; ----,

FCM simulation with both force-monopole and -dipole terms; s, exact data from [17]; �, exact data from [7,39].

Fig. 6. (a) Linear plot; (b) log–linear plot of aX3=U2 against the non-dimensional gap-width � for the case of a force imposed on a

sphere near a plane, with the force acting parallel to the plane. –––, FCM simulation with only the force-monopole term included; ----,

FCM simulation with both force-monopole and -dipole terms; s, exact data from [17]; �, exact data from [7,39].



Fig. 7. Illustration of the particle–particle based axes. One axis is parallel to the line joining the centers of the particles. The other axes

are taken to be orthogonal to both the line of centers and each other. The axes form a right-handed set.
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correction, respectively. The data has been fitted to quadratic polynomials, given in Appendix D. In Fig. 6

we compare the ratio aX3=U2 for the FCM simulations and for the exact data. For the FCM simulations,

the ratio takes on finite values when � ¼ 0, namely 0.111 and 0.0798 for the simulation using the force-

monopole term alone and that which includes the force-dipole, respectively. Whilst the exact solution is

singular, it only exhibits Oðlog �Þ singularities, thus the magnitude of the error in the FCM simulations is

much smaller than in the previously discussed squeezing flow, where the singularity is Oð��1Þ. The effect of
the force-dipole term is also much less pronounced than in the previous case.

3.2. Particle–particle interactions

The resistance problem for a pair of isolated identical spheres, a and b, may be written

F a
i ¼ 6pla Aa

ijU
a
j

�
þAb

ijU
b
j þ aBa

ijX
a
j � aBb

ijX
b
j

�
; ð15Þ
F b
i ¼ 6pla Aa

ijU
b
j

�
þAb

ijU
a
j þ aBb

ijX
a
j � aBa

ijX
b
j

�
; ð16Þ
T a
i ¼ 8pla2 Ca

ijU
a
j

�
þ Cb

ijU
b
j þ aDa

ijX
a
j � aDb

ijX
b
j

�
; ð17Þ
T b
i ¼ 8pla2

�
� Cb

ijU
a
j � Ca

ijU
b
j � aDb

ijX
a
j þ aDa

ijX
b
j

�
: ð18Þ
Table 2

Lubrication theory results and O(1) corrections for a pair of isolated identical spheres

Inner solution O(1) References

Aa
11 ¼ � 1

4
��1 þ 9

40
log �þ 3

112
� log � + )0.995 + Oð�Þ [2,8,23,24,29,45]

Ab
11 ¼ 1

4
��1 � 9

40
log �� 3

112
� log � + 0.350 + Oð�Þ [2,8,23,24,29,45]

Aa
22 ¼ 1

6
log � + )0.998 + Oð�Þ [2,24,25,29,38]

Ab
22 ¼ � 1

6
log � + 0.274 + Oð�Þ [2,24,25,29,38]

Ba
23 ¼ � 1

6
log �� 1

12
� log � + )0.159 + Oð�Þ [24,25,29,38]

Bb
23 ¼ 1

6
log �þ 1

12
� log � + 0.001 + Oð�Þ [24,25,29,38]

Da
11 ¼ 1

8
� log � + )1.052 + Oð�Þ [24–26]

Db
11 ¼ � 1

8
� log � + )0.150 + Oð�Þ [24–26]

Da
33 ¼ 1

5
log �þ 47

250
� log � + )0.703 + Oð�Þ [24,25,29,38]

Db
33 ¼ � 1

20
log �� 31

500
� log � + )0.027 + Oð�Þ [24,25,29,38]
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The complete set of resistance and mobility functions for an isolated pair of unequal particles is given in

[24,29]. We tabulate the near-field forms here, since there are some typographic discrepancies in the lit-

erature. We refer to right-handed orthonormal axes with the e1 direction along the line of centers (i.e., the

line joining the two particles), the other directions are chosen orthogonal to this, in order to form a set of

right-handed axes (see Fig. 7). With respect to these axes, the tensors Ac;Bc;Cc;Dc ðc ¼ a; bÞ have the

same symmetry properties as the particle–wall configuration. Table 2 gives the values of the non-zero

entries. As in Table 1 we have standardized and cross-checked the results from the listed references. The

O(1) terms are taken from [24].
The FCM results for pair configurations are given in [34]. They are qualitatively similar to the results for

sphere–wall arrangements. We tabulate polynomial fits to the FCM data in Appendix D.
4. Implementing lubrication effects in the FCM

We have seen that the performance of the FCM degrades as particles come close to solid boundaries, be

they other particles or container walls. We wish to develop a systematic method of correcting the velocities
of affected particles: we do this by applying an additional force to each affected particle. We shall call these

additional forces barrier forces. The particulars of the calculation are given below, but it is useful to have an

intuitive idea of the method before tackling the details.

The FCM is set up as a mobility problem, i.e., given the forces on the particles and their positions, we

may calculate their velocities. In the lubrication parameterization, we calculate new input forces based on

the exact theory for pairwise and particle–wall interactions. For example, in the pairwise calculations, we

isolate a given pair and balance an adjusted FCM force input with the hydrodynamic drag due to lubri-

cation theory. This allows us to calculate the theoretical velocity for each of a pair of spheres in the cor-
responding configuration for an unbounded domain. We are then able to compute the required force input

to the FCM to reproduce these velocities. Summing over all interactions gives us the barrier on each

particle. Thus, in the lubrication parameterization, the barrier forces on the particles are not singular, but

particle velocities go to zero as the gap-width decreases.

We will find it useful to introduce some notation. For each particle i we define a set CiðRÞ of all other
particles closer than a a given distance R from i, i.e., CiðRÞ ¼ fj : kYðiÞ � YðjÞk < Rg. We also define a set

W ðRÞ consisting of all particles closer than a distance R to the wall, i.e., W ðRÞ ¼ fi : jYðiÞ � n̂nj < Rg where n̂n is
the unit normal to the plane of the wall. An example is illustrated in Fig. 8.

Suppose we fix a cut-off length-scale R ¼ Rp such that we wish to correct interactions for each particle

pair with an interparticle distance less than Rp, and an R ¼ Rw such that we wish to correct the velocities of

particles closer than a distance Rw from the wall, then the total force-monopole term for particle i will be

FðiÞ ¼ FðiÞ þ
X

j2CiðRpÞ
BðijÞ þ IW ðRwÞðiÞBðiwÞ; ð19Þ
Fig. 8. Example of the sets W ðRwÞ and CiðRpÞ. The black particles are in the set W ðRwÞ. The patterned particles are in the set CiðRpÞ.
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where FðiÞ is the body force on the particle (e.g., its weight), BðijÞ is the lubrication barrier force calculated

for the pairwise interaction i� j and BðiwÞ is the lubrication barrier force for the interaction between particle

i and the wall. IW ðRwÞ is the characteristic function for the set W ðRwÞ, which ensures that the particle-i–wall

barrier force is added on only when particle i is sufficiently close to the wall.

The barrier calculation proceeds as follows: at the nth time level

Step 1. Solve the Stokes equations using only the applied external force-monopole, FðiÞ. It is not necessary

at this stage to do the dipole iteration.

Step 2. Compute all the particle velocities, UðiÞ
� ðtnÞ.

Step 3. Find all the particles close to the wall and all close pairs of particles. In other words, compute the

sets CiðRpÞ for each i and W ðRwÞ for each wall.

Step 4. Calculate the lubrication barrier forces:

• The wall interactions: for each particle i in W ðRwÞ compute Biw.

• The pairwise interactions: for every particle i compute Bij for each j 2 CiðRpÞ.
See below for details of the calculations. Note that each interaction is considered independently and no

iteration is required.

Step 5. Sum the barrier forces using Eq. (19).
Step 6. Solve the full flow equations, using the full force-monopole term and including the force-di-

pole.

Step 7. Calculate new particle velocities, UðiÞðtnÞ.
Step 8. Advect the particles with their new velocities and advance time.

4.1. Calculating particle–wall barrier forces

If a single particle is close to a wall, we saw in Section 3.1 that using the FCM, the ratio Fk=ð6plaUkÞ
depends only on the direction of the force relative to the wall, the non-dimensional distance � between the

sphere surface and the plane-wall and the number of FCM-multipole terms used in the simulation. Taking

the same axes as in Section 3.1, we write

cFCMk ð�Þ ¼ Fk
6plaUk

: ð20Þ

The functions cFCMk can be determined empirically, and are given in Appendix D. The component or-

thogonal to the wall corresponds to k ¼ 1 and a squeezing flow. The components parallel to the wall

correspond to k ¼ 2; 3 and shearing flows.
In the general case, suppose particle i is close to the wall at the nth time level (i.e., i 2 W ðRwÞ). It is

affected by all the other particles in the flow, and Eq. (20) does not hold exactly. We introduce an additional

unknown hydrodynamic force H ðiÞ
k ðtnÞ to account for the effects of the other particles, wall effects from the

other side of the channel, etc., which is calculated from

F ðiÞ
k þ H ðiÞ

k ðtnÞ
6plaU ðiÞ

� ðtnÞ
¼ cFCM-M

k ð�Þ; ð21Þ

where cFCM-M
k is the appropriate functional form for calculations without force-dipole terms.

The force on the particle balances the drag:

F ðiÞ
k þ H ðiÞ

k ¼ �6plaU ðiÞ;lub
k kkð�Þ; ð22Þ

where kk is set using the exact resistance tensors of Table 1 as

k1 ¼ A11;
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k2 ¼
A22D33 �B23C32

D33

;

k3 ¼
A33D22 �B32C23

D22

:

This enables us to calculate a value for the lubrication velocity, U ðiÞ;lub
k . Then we set

F ðiÞ
k þ BðiwÞ

k þ H ðiÞ
k ðtnÞ

6placFCM-MD
k ð�Þ ¼ U ðiÞ;lub

k : ð23Þ

At this stage, we use the form of cFCMk which applies to simulations which include both monopole and
dipole multipole terms. We solve Eq. (23) for the wall lubrication barrier BðiwÞ

k .

4.2. Calculating particle–particle barrier forces

At the nth time level, suppose we have found a particle pair ði; jÞ such that j 2 CiðRpÞ, i.e., the particles
are closer together than our cut-off lengthscale Rp. We calculate a set of three direction vectors, along which

we will take components of the force and velocity. These correspond to the axes in Section 3.2. In the

following all forces and velocities are assumed to be the components parallel to one of these directions.

We shall need the following result in our calculations: suppose that particle i and particle j are the only
particles in an unbounded domain of quiescent fluid. A useful property of the FCM model is that

F ðiÞ
k � F ðjÞ

k

6plaðU ðiÞ
k � U ðjÞ

k Þ
¼ cFCMð�;/Þ; ð24Þ

where cdepends on �, the non-dimensional gap-width,/, the angle between the line of centers and that of the êek
direction and the number of FCM-multipole terms included in the simulation. The proof follows from the

definition of the FCM Oseen tensor (see [37]). c is determined empirically and given in Appendix D.
We use a modified version of Eq. (24) in which we introduce unknowns HðiÞ andHðjÞ to take into account

the hydrodynamic effects of the container walls and other particles in the flow. Thus

F ðiÞ
k þ H ðiÞ

k ðtnÞ
� �

� F ðjÞ
k þ H ðjÞ

k ðtnÞ
� �

6pla U ðiÞ
� ðtnÞ � U ðjÞ

� ðtnÞ
� � ¼ cFCM-M

k ð�Þ: ð25Þ

Here, we take cFCM-M
k to be the correct functional form for the component being calculated (squeezing flow

or shearing flow) and for the form of the FCM without dipole terms. Thus the only unknowns in Eq. (25)

are H ðiÞ
k ðtnÞ and H ðjÞ

k ðtnÞ.
Next we impose a condition that the pairwise lubrication drag forces on each particle are equal and

opposite, and may be balanced by the force on each particle:

drag on particle i ¼ �ðdrag on particle jÞ ð26Þ

F ðiÞ
k þ H ðiÞ

k ¼ �ðdrag on particle iÞk; ð27Þ
F ðjÞ
k þ H ðjÞ

k ¼ �ðdrag on particle jÞk; ð28Þ

) H ðiÞ
k þ H ðjÞ

k ¼ �ðF ðiÞ
k þ F ðjÞ

k Þ: ð29Þ
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Eqs. (29) and (25) form a closed system for H ðiÞ
k and H ðjÞ

k . We may now revisit the particle pair resistance

problem, (Eqs. (15)–(18)) and observe that

ðdrag on particle iÞk � ðdrag on particle jÞk ¼ ðF ðiÞ
k þ H ðiÞ

k Þ � ðF ðjÞ
k þ H ðjÞ

k Þ

¼ �6plakkðU ðiÞ;lub
k � U ðjÞ;lub

k Þ;

where kk is set using the exact resistance tensors of Table 2 as

k1 ¼ Aa
11 �Ab

11;
k2 ¼
ðAa

22 �Ab
22ÞðDa

33 �Db
33Þ � ðBa

23 �Bb
23ÞðCa

32 � Cb
32Þ

Da
33 �Db

33

;

k3 ¼
ðAa

33 �Ab
33ÞðDa

22 �Db
22Þ � ðBa

32 �Bb
32ÞðCa

23 � Cb
23Þ

Da
22 �Db

22

;

since there is no net torque on either particle. This gives us the value of the velocity of particle i, relative to
particle j. By analogy with Eq. (25) we set

F ðiÞ
k þ BðijÞ

k ðtnÞ þ H ðiÞ
k ðtnÞ

� �
� F ðjÞ

k þ BðjiÞ
k ðtnÞ þ H ðjÞ

k ðtnÞ
� �

6placFCM-MD
k ð�Þ ¼ U ðiÞ;lub

k � U ðjÞ;lub
k ; ð30Þ

which, upon rearrangement, gives one expression for the difference between the lubrication barrier forces

BðijÞ
k ðtnÞ � BðjiÞ

k ðtnÞ at the nth time level. (Note that we use the form of cFCMk for calculations using both

monopole and dipole multipoles at this stage.) To close the system we use another condition:

BðijÞ
k ðtnÞ þ BðjiÞ

k ðtnÞ ¼ 0; ð31Þ

so that there is no resultant force on the center of mass of the particle pair.

Note that the barrier force calculation is carried out independently for each pair, with no iteration. The

effect of iterating the scheme is considered in Section 5.2.
5. Example simulations

In tests, the lubrication parameterization recovers the exact results for isolated particle pairs and indi-

vidual particles near a single wall. In this section we consider how it fares in different geometries.

5.1. Particle in a channel

Lomholt and Maxey [34] compared FCM simulations to exact results from [13,14] for a particle in a

channel. They found that at small distances between the particle and the channel wall the FCM did not

agree with the exact results. In this section we compare lubrication parameterization simulations for

small particle–wall distances. Fig. 9 describes the geometry of the flows. A sphere of radius a is placed

in a channel with a height H . The dimensional parameter a, controls the center-line velocity of the
parabolic Poiseuille velocity profile. F1 and F2 are the imposed forces on the sphere, perpendicular and

parallel to the channel walls, respectively. b is the distance of the sphere center from the bottom wall of

the channel.



Fig. 9. Channel geometry.
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The code used is described in Appendix C. The height of the channel in the wall-normal direction was set
to be H ¼ 2. We fixed the ratio of the height of the particle center above the bottom wall to the particle

radius, b=a ¼ 1:1, but varied the ratio of the particle center height to the channel height, s ¼ b=H . The

particle radius a was varied accordingly. Thus, the particle is always close to the bottom wall, but the

relative influence of the top wall is governed by s.
The length of the channel in the periodic directions was set at 30a, and thus varied with the particle

radius. The resolution in these periodic directions was chosen so that there were at least 6 points inside

the particle in each direction. The distance Rw, the distance between the particle center and the wall at

which the lubrication barrier is switched on, was 1:25a. Thus the barrier along the bottom wall was
active for all of the following simulations. The barrier along the top wall was only active when s ¼ 0:5,
corresponding to the situation where the sphere is in the center of the channel. The value of Rw only

affects when the lubrication barrier is activated: it is not involved in the calculation of the barrier forces

as a parameter.

5.1.1. Imposed force perpendicular to the walls

The geometry for the motion is given by Fig. 9 with a ¼ 0, F1 ¼ 6pla (the force required for an isolated

particle to move with a velocity of 1.0) and F2 ¼ 0. Thus there is no flow in the channel, except for that due
to a particle sedimenting towards the bottom wall. The resistance problem for this geometry is similar to

that for the single wall–particle configurations of Section 3.1. We use the same notation for the resistance

tensors. In Fig. 10 we plot the drag coefficient

�A11 ¼
F1

6plaU1

; ð32Þ

for various values of s ¼ b=H . Recall that the ratio b=a is fixed at 1.1, so the sphere is always close to the

bottom wall. The figure illustrates the improvement of the FCM when the lubrication parameterization is

used. Note that since the parameterization is tuned for a sphere close to a single plane wall, the results are

excellent for small s, when the relative effect of the upper wall is negligible. For intermediate s the effect of
the upper wall has some importance, and there is an evident quantitative difference between the results for

the lubrication parameterization and the exact results. Nevertheless, these results still show an improvement

over the simple FCM model. For s ¼ 0:5 the particle is located exactly in the center of the channel. Thus,
the lubrication parameterization is employed for both walls additively. The lubrication barrier force from

each wall acts to retard the particle motion; these forces do not cancel out. We see that the monopole-only

version of the code is able to reproduce the exact results to within about 1% whereas the error for the

simulations using both monopole and dipole is about 28%. The reason for this discrepancy is that in

the center of the channel, the geometry is symmetric, so the rate of strain on the particle is zero. Thus, the

dipole term is zero, but the function cFCM-MD
k employed in the the lubrication parameterization is still that



Fig. 10. Particle in a channel, sedimenting perpendicular to the channel walls. Semilog plot of the drag coefficient F1=ð6plaU1Þ versus
s ¼ b=H . –––, FCM simulation with only the force-monopole term from [34]; - - - -, FCM simulation with both force-monopole and

-dipole terms from [34]; s, FCM simulation using the lubrication parameterization with only one force term; �, FCM simulation using

the lubrication parameterization with both force terms (monopole and dipole); ., exact data from [13].
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for a simulation using the dipole term. This function is for a single wall geometry. At this distance from a

single wall, the dipole would have a significant retarding effect on the particle. Thus using cFCM-MD
k in Eq.

(23) we underestimate the required lubrication barrier forces. Situations involving intermediate s or such
that the rate of strain on the particle is zero are unlikely to occur in dealing with a reasonably sized random

suspension. In the case that the flow required was in a geometry with nearby walls such as a narrow

channel, the problems could be fixed by using a cFCMk function calculated from the pure FCM results for

flow in such a channel.

5.1.2. Imposed force parallel to the walls

The geometry for the motion is given by Fig. 9 with a ¼ 0, F1 ¼ 0 and F2 ¼ 6pla. Thus the only flow is
that caused by an imposed force on the particle, parallel to the walls. In Fig. 11 we plot the velocity ratios

aX3

U2

¼ � C32

D33

ð33Þ

and the drag coefficient

F2
6plaU2

¼ �A22D33 �B23C32

D33

ð34Þ

for various values of s ¼ b=H . We see that the ratio aX3=U2 (panel (a)) is preserved when the simple FCM is

augmented by the lubrication parameterization. This is due to the linearity of the governing equations: the
lubrication barrier modifies the value of the force-monopole term only. For a given distance from the wall,

the particle velocity, angular velocity and force-dipole terms are all proportional to the value of the force-

monopole.

For the drag coefficient, F2=ð6plaU2Þ we see a marked improvement in using the lubrication parame-

terization over the simple FCM. The change in the error with s is less marked than in the previous case,

which is an indication that upper wall has less influence in this type of flow.



Fig. 11. Particle in a channel, with an imposed force parallel to the channel walls. (a) Plot of the ratio aX3=U2 versus s ¼ b=H ; (b)

plot of the ratio F2=ð6plaU2Þ versus s. –––, FCM simulation with only the force-monopole term included; ----, FCM simulation

with both force-monopole and -dipole terms; s, FCM simulation using the lubrication parameterization with only one multipole

term; �, FCM simulation using the lubrication parameterization with both multipole terms (monopole and dipole); ., exact data
from [14].
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5.1.3. Neutrally buoyant sphere in Poiseuille flow

The geometry for the motion is given by Fig. 9 with H 2a ¼ 1, so that the center-line velocity Vc ¼ 0:25.
The sphere is neutrally buoyant, so we set F1 ¼ 0 and F2 ¼ 0. The particle is present through the use of the

force-dipole term alone.
Since the fluid is not at rest at infinity, the resistance problem must be augmented

Fi ¼ 6pla AijUj

�
þ aBijXj þKijV c

j

�
; ð35Þ
Ti ¼ 8pla2 CijUj

�
þ aDijXj þLijV c

j

�
: ð36Þ

In this particular case, with Vc ¼ Vce2, the only relevant non-zero components of K and L are K22 and
L32. The sphere is neutrally buoyant, so we may set the left-hand-side of Eqs. (35) and (36) equal to zero.

Thus we find the following ratios:

U2

Vc
¼ �K22D33 �L32B23

A22D33 � C32B23

; ð37Þ
aX
Vc

¼ K22C32 �L32A22

A22D33 � C32B23

ð38Þ
which are plotted in Fig. 12. These results indicate that the lubrication model offers an improvement over

the simple FCM for a case involving a background flow. Again we see an increase in error as s increases. It
should be noted that the simple FCM is able to give very good results for the tensors K and L [34]. The

discrepancy between the simple FCM and the exact results is caused by errors in the other tensors,
A;B;C;D as was illustrated in the previous sections.



Fig. 12. Neutrally buoyant sphere in a Poiseuille flow. (a) Plot of the ratio U2=Vc versus s ¼ b=H ; (b) plot of the ratio aX3=Vc versus s.
–––, FCM simulation with both force-monopole and -dipole terms from [34]; s, FCM simulation using the lubrication parameteri-

zation with both force terms (monopole and dipole); ., exact data from [14].
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5.2. Horizontal seven sphere chain

The results in this section were computed using the analytic expression for the FCM-Oseen tensor, given

in [37]. We calculate local values of the flow field by accurate numerical integration using weighted sums.

A horizontal chain of spheres, illustrated in Fig. 13, with a center to center spacing of 2.005 radii is modeled

and the results compared to those computed by Ganatos et al. [12]. The spheres sediment under gravity, with

the middle sphere moving fastest. Fig. 14 shows instantaneous results for the drag correction factor,

F =ð6plaUÞ and the sphere angular velocities. The results are given for only half the chain due to symmetry.

Ganatos et al. estimate their maximum probable error to be 0.4% for the drag correction factor and 5% for the
angular velocities. An additional uncertainty is introduced through themeasurement of data from their plots.

We estimate the maximum of this error to be approximately 2% in the case of the drag coefficients and as

much as 10% for the angular velocities. The performance of the lubrication parameterization improves upon

that of the simple FCM for the inner spheres, but degrades for the outer spheres in the chain. This is illus-

trative of the limitations of applying the lubrication barrier in a pairwise fashion. In this case we see that the

lubrication barrier on particle 2 is affected by its interaction with both particles 1 and 3, whereas the lubri-

cation barrier on particle 3 is only calculated from its interaction with particle 2, even though it is indirectly

affected by particle 1. This results in the outermost sphere having a velocity which is too high. Iterating the
lubrication barrier calculation would not lead to improvement. After one pass through the lubrication pa-

rameterization scheme, the relative velocity between particles 2 and 3 is still higher than that which would be

expected for an isolated pair. A second pass through the scheme would act to reduce this relative velocity,

resulting in an additional force in the downward direction on the outermost sphere, exacerbating the problem.
Fig. 13. Illustration of seven sphere horizontal chain. Note that the central sphere is numbered zero. The chain is symmetric about this

sphere.



Fig. 14. Seven sphere chain sedimenting perpendicular to its line of centers. (a) Plot of the ratio F =ð6plaUÞ; (b) plot of the angular

velocity X. s, FCM with only one force term; �, FCM with both force-monopole and -dipole terms; +, FCM with the force-monopole

term and lubrication parameterization; }, FCM with both force terms and the lubrication parameterization; I, results from [12]. Note

that due to symmetry we only need give results for half the chain.
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5.3. Homogeneous random suspension with periodic boundary conditions

We model a homogeneous random suspension in a periodic domain, with a Fourier-pseudospectral

code. The use of this code is documented in [37]. The domain size is taken to be 2p � 2p � 2p, and we use a

resolution of 128 points in each direction. We initially seed the flow with 1600 particles, distributed ran-

domly in space. Each particle has radius 0.1305, corresponding to a total volume fraction of 6%. We neglect
particle inertia in the calculations.

The code was run with the force-monopole term only. Each particle was subjected to a force of 6pla,
which corresponds to the drag on an isolated particle with a Stokes settling velocity of 1. In this periodic

domain, a single particle settling under the action of such a force settles with a velocity V0 ¼ 0:941.
The lubrication parameterization was employed with a variety of cut-off parameters, Rp. In addition, we

used the repulsive potential force barrier (described in Appendix B). This acted only in the event that a pair

of particles overlapped: the lubrication barrier is undefined for overlapping particles. The parameters used

in the potential force barrier were Fref ¼ 0:25� 6pla and Rref ¼ Rp. On average, less than 3 particle pairs
overlapped by more than 5% of a radius in a given time-step.

For each set of parameters, the system was run to a statistically stationary state, the initial results were

discarded and the subsequent results time-averaged over a period of more than 2400 Stokes settling times

(tS ¼ a=V0). In Table 3 we give the mean particle settling velocity and mean square fluctuations for each
Table 3

Mean particle velocities and fluctuations

Rp=2a hVki=V0 hðV 0
k Þ

2i=V 2
0 hðV 0

?Þ
2i=V 2

0 �nn

1.05 0:7628� 0:0005 0.5552 0.0755 1.2634

1.10 0:7922� 0:0005 0.6832 0.0788 1.3221

1.20 0:7965� 0:0005 0.6684 0.0811 1.3473

1.30 0:8053� 0:0005 0.7281 0.0845 1.3605
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value of Rp. The uncertainty in the mean settling velocity is calculated as the standard deviation of the

mean. Also given is �nn, the average number of particles neighboring each particle in the suspension. We

consider two particles to be neighbors if their center–center interparticle distance is less than a cut-off length

Rc. The value of �nn is an increasing function of Rc and is identically zero when Rc is less than the minimum

particle separation distance in the suspension. In this case we take Rc ¼ 1:46� 2a, since it is a convenient

value above the largest Rp we considered. The results are not highly sensitive to the value of Rc chosen.

As we change Rp, the lubrication barrier cut-off parameter, we find that the variation in the mean particle

settling velocity and fluctuations is not large. However, the dependence on Rp is systematic. The increase in
the mean settling velocity with Rp may be explained by the fact that there is also more clustering of particles,

as indicated by the values of �nn. The lubrication drag forces act to reduce the relative velocity between

particle pairs predicted by the FCM. Thus, particles remain closer together for longer, giving rise to greater

clustering. As the lubrication cut-off parameter Rp increases, particles experience this sticking effect more of

the time.
6. Conclusions

Previous work [34,37] has shown that the FCM smoothes out the flow close to the particle surface. At a

distance of approximately 0:25� 0:5a away from the surface, it reproduces the exact results. Consequently,

the FCM performs well when distances between solid boundaries are sufficiently large, however it does not
capture strong lubrication forces that act between particles in relative motion at small separations. The

version of the model using two multipole terms, performs considerably better than the version with the

monopole alone, since the dipole term enforces a constraint on the particle deformation.

We have developed a lubrication parameterization to improve the particle velocities for close interac-

tions calculated using the FCM. This is achieved by considering individual interactions between particles

and walls, and pairwise interparticle interactions. Lubrication barrier forces are calculated based upon our

knowledge of exact results for isolated pairs of particles and particles interacting with a single wall. We also

use our experience of the FCM in the corresponding situations. These forces are added onto the force-
monopole term for each particle.

The lubrication parameterization reproduces the exact results for the particle velocities of an isolated

pair of spheres and for a sphere near a single plane wall, which the modeling is tuned to. In general the

lubrication parameterization improves the estimates of particle velocities, but not the form of the local flow

field. However, having the correct local velocity will improve the flow in the far field. We tested the model

to evaluate its performance in several additional geometries. The results indicated that where it is possible

to isolate the effects of a particle and a single wall or a pairwise interaction, the lubrication parameterization

performs well. With chains of close particles, or with a narrow channel this parameterization becomes less
reliable. This is quantified in the results presented.

We also tested the case of a homogeneous random suspension with 1600 particles sedimenting in a

periodic box. In addition to the lubrication parameterization we found it necessary to employ a repulsive

force which acted only in the occasional event of particle overlap. We saw that the use of different cut-off

lengthscales for the lubrication parameterization made some difference to the microstructure of the sus-

pension and to the velocity of the bulk flow.

The use of the lubrication barrier is more computationally expensive than the use of a simple collision

barrier, such as the potential force barrier of Eq. (B.1). For the case of potential force barrier simulations,
at each time-step we must first determine neighboring pairs of particles. Checking each pair of particles in

the domain would require OðN 2Þ operations, where N is the number of particles. However, we may use a

more efficient cell-index technique such as that described in [1]. This is an OðNNcÞ calculation, where Nc is

the number of cells in the domain. Second, we must compute the potential force barrier for each pair of
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neighbors. The number of operations involved scales linearly with the number of close particle pairs, Np.

Once the barriers have been calculated we must solve the forced Stokes equations, (1) and (2), for the flow

field. The number of operations required in this calculation depends on the domain size and on the effi-

ciency of the flow solver. Finally, we calculate the particle velocities (OðNÞ operations) and advect the

particles to new positions (OðNÞ operations).
When using the lubrication barrier an additional computation of the flow field and particle velocities is

required before calculating the lubrication barrier forces. Also, the computation of the lubrication barrier for

each pair involvesmore operations, although this step still scales linearly with the number of close pairs,Np. In
practice, using the homogeneous random suspension code described in Section 5.3, we find that the compu-

tation time for simulations using the lubrication barrier is approximately twice that for simulations using the

potential force barrier.We timed simulations using a serial code running on an IBMSP2, (oneCPUof a 4-way

PowerPC 604e (332 MHz) node), with a grid size of 1283 and 1600 particles, corresponding to a volume

fraction of 6%. TheRp parameter was set at 2:2a. Thewall clock time taken for initialization (identical for both

barriers) plus 100 time-steps was 1765 s for the lubrication barrier run and 908 s for the potential force barrier

simulation. Further investigation needs to be carried out before drawing a final conclusion as to whether the

additional computational expense is justified by the inclusion of extra physics in the model.
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Appendix A. Dipole iteration

For simulations of N particles, the exact computation of SðnÞ
ij involves the construction and solution of a

5N � 5N linear system

LS ¼ E;

where L represents the FCM Stokes flow operator which maps stresslet strengths to averaged particle

strains. L is a linear operator which depends on the geometry of the system and the particle positions. S is

the unknown, containing the independent components of the stresslet for each particle. E is the 5N vector

containing all the independent elements of the strain for each particle, determined from the flow due to the
external forces and torques on each particle.

In practice, we avoid building the coefficient matrix and compute the elements of SðnÞ
ij iteratively, ex-

ploiting our knowledge of the short range of the effect of the force-dipole on the flow. One such iterative

scheme is described in [33]. Another, faster method is described below.

We use the following heuristic algorithm for the kth iteration step:

Step 1. Set E ¼ Ek�1, the averaged rate of strain vector calculated from the flow due to the forces, torques

and stresslets on each particle at the end of the ðk � 1Þst iteration. If kEkR5N is less than a given tol-

erance level terminate the iteration, otherwise continue.
Step 2. SetS� ¼ ðð20pla3Þ=3ÞE as a trial solution, since the stresslet for a single particle in a pure straining

flow is Sij ¼ ðð20pla3Þ=3ÞEij.

Step 3. Calculate the rate of strain in the flow due to S� alone (do not include force-monopole or torque

terms), i.e., E� ¼ LS�.
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Step 4. Estimate a scale factor, kðnÞ for each particle n. (This is explained below.)

Step 5. Set SðnÞ;k
ij ¼ SðnÞ;k�1

ij þ kðnÞSðnÞ;�
ij for each particle n.

Step 6. Calculate the flow due to the full monopole and dipole terms.

Step 7. k :¼ k þ 1.
Our choice for kðnÞ is motivated as follows: suppose we have only one particle in the system, then

E ¼ ðE11;E12;E13;E22;E23ÞT, S ¼ ðS11; S12; S13; S22; S23ÞT, etc. A simple calculation shows that

min kEþ kE�k

is achieved by setting k ¼ �E� � E=kE�k.
For multiple particles, we find that the dipole on one particle has a limited effect on the rate of strain on

the others, unless they are close together. In this case we define vectors ~EE and ~EE� for each particle. These

contain those elements of E and E� corresponding to the particle itself and its near neighbors. Near

neighbors are defined as particles whose center–center distance is less than a a cut-off lengthscale. Typically

this might be Oð2:5aÞ. For example, if particles 1 and 2 are close, particles 2 and 3 are close but particle 4 is
isolated from them all, then

~EEð1Þ ¼ ðEð1Þ
11 ; . . .E

ð1Þ
23 ;E

ð2Þ
11 ; . . .E

ð2Þ
23 Þ

T
;

~EEð2Þ ¼ ðEð1Þ
11 ; . . .E

ð1Þ
23 ;E

ð2Þ
11 ; . . .E

ð2Þ
23 E

ð3Þ
11 ; . . .E

ð3Þ
23 Þ

T
;

~EEð3Þ ¼ ðEð2Þ
11 ; . . .E

ð2Þ
23 E

ð3Þ
11 ; . . .E

ð3Þ
23 Þ

T
;

~EEð4Þ ¼ ðEð4Þ
11 ; . . .E

ð4Þ
23 Þ

T
:

We define k by

kðnÞ ¼
0 ifk~EEðnÞk < tolerance;

� ~EEðnÞ;��~EEðnÞ

k~EEðnÞ;�k otherwise:

8<
:

For moderate volume fractions, the system converges after just a few iterations. For example, in a typical

first time-step for a volume fraction of 11% the force-dipole converged after just 5 iterations (using the

channel code of Appendix C, with dimensions of 10a in the wall-normal direction and 30a in the periodic

dimensions, and 250 randomly seeded particles of radius a ¼ 1 in the flow). The tolerance level used was

1%� Vs=a, where Vs is the Stokes settling velocity of an isolated particle of the same size and weight. In

contrast, for the same seeding of particles, the iteration method of Lomholt [33] failed to converge in 25
iterations. This iterative scheme also works well in finite Re flows [32].

Note that at the nth time-step, the dipole from the ðn� 1Þst time-step is often a good approximation to

the dipole at the current time. Thus, at later times in the simulation, the number of required iterations

decreases.
Appendix B. Potential force collision barrier

The repulsive potential force collision barrier has been used by Climent and Maxey [6] to prevent un-

physical particle overlaps in their simulations of homogeneous random suspensions.
For the case of a pair of particles, i and j, let xij ¼ YðiÞ � YðjÞ, and rij ¼ kxijk. If rij < Rref then the barrier

force
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Bij ¼ � Fref
2a

R2
ref � r2ij

R2
ref � 4a2

" #2
xij ðB:1Þ

is added to the force monopole on particle i. Fref is a parameter with the dimensions of a force, usually taken

to be a fraction of the buoyancy adjusted weight of the particle, and Rref is a cut-off length. An analogous
expression applies for the close approach of a particle to a wall. This two-parameter function was chosen

for convenience, and its effects on the bulk flow are small, as long as the cut-off length Rref is sufficiently

short. A sensitivity analysis for the effects on the bulk flow for a range of parameters is given in [9]. Note

that the force is antisymmetric in i; j: Bij ¼ �Bji, and thus is consistent with Newton�s third law.
Appendix C. Channel code

We wish to solve the Stokes equations

�lr2uþrp ¼ f; ðC:1Þ
�r � u ¼ 0 ðC:2Þ

for velocity, u ¼ ðu; v;wÞ and pressure, p, in a domain ð0; LxÞ � ð0; LyÞ � ð0; LzÞ subject to homogeneous

Dirichlet (no slip) conditions on the channel walls:

uð0; y; zÞ ¼ uðLx; y; zÞ ¼ 0

and periodic boundary conditions in the y and z directions:

uðx; 0; zÞ ¼ uðx; Ly ; zÞ 8ðx; zÞ 2 ð0; LxÞ � ð0; LzÞ and
uðx; y; 0Þ ¼ uðx; y; LzÞ 8ðx; yÞ 2 ð0; LxÞ � ð0; LyÞ:

We use a mixed Fourier spectral element method to solve for the flow. A comprehensive introduction to
spectral element methods as applied to computational fluid dynamics is given by Karniadakis and Sherwin

[28].

Since the geometry is periodic in the wall-parallel directions, we may write the velocity, pressure and

forcing in Fourier series representations:

uðx; y; zÞ ¼
X
k;l

ûuðx; k; lÞeiðby kyþbzlzÞ;
pðx; y; zÞ ¼
X
k;l

p̂pðx; k; lÞeiðby kyþbzlzÞ;
fðx; y; zÞ ¼
X
k;l

f̂fðx; k; lÞeiðby kyþbzlzÞ;

where by ¼ 2p=Ly and bz ¼ 2p=Lz. For simplicity of notation, in the rest of this description we restrict to the

case where Ly ¼ Lz and write b ¼ by ¼ bz. The algorithm is easily generalized to the case of Ly 6¼ Lz, as

indeed it is in the code.
In practice, this transformation is discretized by truncation of the Fourier series. The efficient fast

Fourier transform (FFT) can be used to carry out the transformation between physical and spectral space.
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The Fourier series transformation reduces the Stokes equations to a series of decoupled problems where we

treat the wavenumbers as parameters:

�l
d2

dx2

�
� k2

�
ûuþ dp̂p

dx
¼ f̂f ð1Þ;
�l
d2

dx2

�
� k2

�
v̂vþ ibkp̂p ¼ f̂f ð2Þ;
�l
d2

dx2

�
� k2

�
ŵwþ iblp̂p ¼ f̂f ð3Þ;
� dûu
dx

 
þ ibkv̂vþ iblŵw

!
¼ 0

with k2 ¼ b2ðk2 þ l2Þ.
The equivalent weak form is this: Find ðûu; p̂pÞ in X �M such that

l
dûu
dx

;
d/
dx

 !(
þ k2ðûu;/Þ

)
� p̂p;

d/
dx

;

� �
¼ ðf̂f ð1Þ;/Þ;
l
dv̂v
dx

;
d/
dx

 !(
þ k2ðv̂v;/Þ

)
þ ibk p̂p;/

� �
¼ ðf̂f ð2Þ;/Þ;
l
dŵw
dx

;
d/
dx

 !(
þ k2ðŵw;/Þ

)
þ ibl p̂p;/

� �
¼ ðf̂f ð3Þ;/Þ

for all / 2 X , and

� dûu
dx

 
þ ibkv̂vþ iblŵw; q

!
¼ 0

for all q 2 M , where X and M are chosen to be

X ¼ H1
0ðð0; LxÞÞ;
M ¼ L2
0ðð0; LxÞÞ

so that the solutions are well posed [15]. Here H1
0ðð0; LxÞÞ is the space of all functions that are square

integrable on ð0; LxÞ, whose derivatives are square integrable, and that satisfy the Dirichlet boundary

conditions at x ¼ 0; Lx. L
2
0ðð0; LxÞÞ is the space of square integrable functions on ð0; LxÞ with zero average.

Following Rønquist [41], we discretize these equations using spectral elements. Due to the coupling

between the velocity and pressure, we may not discretize them independently: to avoid spurious modes we
must choose compatible subspaces. For a discussion of the necessary conditions of compatibility see [5]. We

split our domain ð0; LxÞ into K equal elements, and choose the following subspaces that exclude parasitic

modes:
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Xh ¼ H1
0ðð0; LxÞÞ \PN ;Kðð0; LxÞÞ;

Mh ¼ L2
0ðð0; LxÞÞ \PN�2;Kðð0; LxÞÞ;

where PN�2;Kðð0; LxÞÞ is the space of polynomials of degree less than or equal to N restricted to the K el-

ements. Our choice of bases for these spaces corresponds to a discretization of the velocity using N Gauss–

Lobatto–Legendre points on each element and the pressure using N � 2 Gauss–Legendre points. In this

way, we are able impose the Dirichlet boundary conditions and preserve continuity of velocity between

each element, but there are no boundary conditions on the pressure, and it may be discontinuous from

element to element.

We use the Uzawa algorithm, as described in [28,36] to solve for the flow. The resulting matrix vector
systems are solved using preconditioned conjugate gradient (PCG) methods. The preconditioner for the

pressure equation is the diagonal Gauss–Legendre mass matrix (associated with the pressure discretization).

The PCG residual corresponds to the discrete divergence of the velocity field, )Du, and thus the specified

convergence tolerance level reflects the degree to which the flow is incompressible. The spectrum of the

preconditioned pressure operator is analyzed in [36]. In our implementation, for each given wavevector

ðk; lÞ, the PCG pressure iteration typically converges within three iterations, as long as the spectral element

resolution is high enough, which is consistent with Maday et al.�s results for semiperiodic problems.

The solution of the velocity equations involves the inversion of a Helmholtz operator. This is accom-
plished via PCG iteration with the inverse of the diagonal of the Helmholtz operator as preconditioner.

This form of preconditioner is chosen since it is particularly easy to calculate. The condition number of the

operator varies with wavenumber. In particle simulations, the lowest wavenumbers require the most iter-

ations for convergence.

Further details of the code and its validation (including spectral convergence tests) are given in Dance

[9].
Appendix D. cFCM functions

The cFCM functions, defined in Eqs. (20) and (24) can be calculated using empirical data from FCM

simulations and carrying out a curve fitting procedure, to give cFCM in polynomial form:

a0 þ a1�þ a2�2:

The values of ai given here were calculated using MATLAB�s function polyfit for data such that �6 0:1,
which fits the data in a least-squares sense. They are given in the following table.

cFCM functions
Model
 Component
 a0
 a1
 a2
Particle–wall functions
FCM-M
 1
 4.3912
 )5.8639
 6.2752
FCM-M
 2
 1.9275
 )1.2935
 1.2968

FCM-MD
 1
 7.7338
 )21.6693
 37.5721
FCM-MD
 2
 2.2147
 )2.6269
 4.5880
Particle–particle functions

FCM-M
 1
 2.7253
 )1.4872
 0.7579
FCM-M
 2
 1.7367
 )0.6973
 0.4670
FCM-MD
 1
 4.0699
 )4.9662
 3.8485
FCM-MD
 2
 1.7597
 )0.7747
 0.5565
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FCM-M refers to the monopole only version of the model and FCM-MD refers to the version using

both monopole and dipole multipoles. Recall that component 1 is for a squeezing configuration: either a

particle sedimenting towards a wall, or a pair of particles with equal and opposite forces along their line of

centers. Component 2 is for a shearing flow: either a particle with an imposed force parallel to a wall, or a

pair of particles with equal and opposite imposed forces orthogonal to their line of centers. We need not

give component 3 since it has the same form as component 2.
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